

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 901-904

Tetrahedron Letters

Daphniglaucin C, a novel tetracyclic alkaloid from Daphniphyllum glaucescens

Hiroshi Morita,^a Hiroshi Takatsu,^a Ya-Ching Shen^b and Jun'ichi Kobayashi^{a,*}

^aGraduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan ^bInstitute of Marine Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC

Received 4 November 2003; revised 21 November 2003; accepted 26 November 2003

Abstract—A novel *Daphniphyllum* alkaloid with an unprecedented tetracyclic ring system consisting of an octahydroindole and a hexahydroazulene rings, daphniglaucin C (1), has been isolated from the leaves of *Daphniphyllum glaucescens* and the structure and relative stereochemistry were elucidated on the basis of spectroscopic data. Daphniglaucin C (1) inhibited the polymerization of tubulin.

© 2003 Elsevier Ltd. All rights reserved.

Plants of *Daphniphyllum* species produce structurally diverse alkaloids with unusual polycyclic skeletons.^{1,2} These unique ring systems have attracted great interest as challenging targets for total synthesis and biosynthetic studies.³ Heathcock and co-workers have proposed a biogenetic pathway for *Daphniphyllum* alkaloids and demonstrated a biomimetic total synthesis of several *Daphniphyllum* alkaloids.^{3,4}

Recently, we have isolated some novel types of *Daph-niphyllum* alkaloids^{5–12} such as daphnezomines A and B⁵ with a unique aza-adamantane core and daphnezomines F and G⁶ with a 1-azabicyclo[5.2.2]undecane ring system as well as daphnicyclidins A–H,⁸ J, and K⁹ with unique hexa- or pentacyclic ring system, and daphmanidin A¹⁰ with an unprecedented fused-hexacyclic skeleton from the leaves and stems of *D. teijismanni* and/ or *D. humile*, daphniglaucin A¹¹ with a fused-heptacyclic skeleton and a quaternary nitrogen from the leaves of *D. glaucescens*, and calyciphyllines A and B¹² with a novel hexacyclic skeleton from the leaves of *D. calycinum*. In our continuing search for structurally unique and biogenetically interesting *Daphniphyllum* alkaloids, daphniglaucin C (1), a novel tetracyclic alkaloid consisting of an octahydroindole and a hexahydroazulene

rings, was isolated from the leaves of D. glaucescens. This paper describes the isolation and structural elucidation of 1.

The leaves of *D. glaucescens* were extracted with MeOH, and the extract was partitioned between EtOAc and 3% tartaric acid. Water-soluble materials, which were adjusted at pH 9 with satd Na₂CO₃, were extracted with CHCl₃. CHCl₃-soluble materials were subjected to an amino silica gel column (hexane/EtOAc, 9:1 \rightarrow 1:1 and then CHCl₃/MeOH, 1:0 \rightarrow 0:1), from which a fraction eluted with CHCl₃/MeOH (7:3) was purified by C₁₈ HPLC (30% CH₃CN/0.1% TFA) to afford daphniglaucin C¹³ (1, 0.009% yield) together with a known alkaloid, macrodaphniphyllidine.¹⁴

Daphniglaucin C (1) showed the pseudomolecular ion peak at m/z 404 (M+H)⁺ in the FABMS, and the molecular formula, C₂₃H₃₃NO₅, was established by HRFABMS [m/z 404.2438, (M+H)⁺, Δ +0.1 mmu]. IR

Keywords: Alkaloid; Daphniphyllum glaucescens; Daphniglaucin C; NMR.

^{*} Corresponding author. Tel.: +81-117064985; fax: +81-117064989; e-mail: jkobay@pharm.hokudai.ac.jp

^{0040-4039/\$ -} see front matter $\odot 2003$ Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2003.11.116

absorptions implied the presence of hydroxyl (3370 cm⁻¹) and three carbonyl functionalities including ester, ketone, and amide (1730, 1695, and 1635 cm⁻¹, respectively). ¹³C NMR data (Table 1) revealed 23 carbon signals due to one trisubstituted olefin, one carbonyl, one ester carbonyl, one amide carbonyl, two sp³ quaternary carbons, four sp³ methines, ten sp³ methylenes, one methyl, and one methoxy group. Among them, one methylenes (δ_C 51.7; δ_H 2.96 and 3.61) and one methine (δ_C 66.3; δ_H 4.15) were ascribed to those bearing a nitrogen, while one methylene (δ_C 65.4; δ_H 3.81 and 4.49) was that bearing an oxygen.

The ¹H–¹H COSY and HOHAHA spectra revealed connectivities of three partial structures **a** (C-1 to C-4, C-2 to C-18, and C-18 to C-19 and C-20), **b** (C-10 to C-12, C-10 to C-17, and C-15 to C-17), and **c** (C-13 to C-14) as shown in Figure 1. HMBC correlations were observed for H-19b to C-1 ($\delta_{\rm C}$ 66.3) and H-7 to C-19 ($\delta_{\rm C}$ 51.7), suggesting that C-1, C-7, and C-19 were connected to each other through a nitrogen atom. Long-range couplings for H-7 to H₂-19 and H-1 indicated the presence of an *N*-formyl group ($\delta_{\rm H}$ 8.08; $\delta_{\rm C}$ 165.3). The connectivity of C-1 and C-13 through C-8 was implied by HMBC correlations for H-1 and H-13 to C-8 ($\delta_{\rm C}$ 46.8). HMBC correlations for H-4 to C-5 ($\delta_{\rm C}$ 57.6) and H₂-21 to C-5 and C-6 ($\delta_{\rm C}$ 216.0) indicated that C-21 was connected to C-4 and C-6 through C-5. HMBC cross-

Table 1. ¹H [$\delta_{\rm H}$ (*J*, Hz)] and ¹³C [$\delta_{\rm C}$] NMR data of daphniglaucin C (1) in CD₃OD at 300 K

	$\delta_{ m H}$	δ_{C}	HMBC (¹ H)
1	4.15 (1H, d, 4.1)	66.3	13, 19b
2	2.24 (1H, m)	40.4	18, 19b, 20
3a	1.65 (1H, m)	16.9	_
3b	1.76 (1H, m)		_
4a	1.60 (1H, m)	26.7	21
4b	2.22 (1H, m)		
5	_	57.6	4b, 13, 21
6	_	216.0	12b, 21
7	8.08 (1H, s)	165.3	_
8		46.8	1, 13
9		150.6	13, 15, 16a, 17a
10	3.16 (1H, br t, 11.5)	47.1	12a, 15, 17b
11a	1.55 (1H, m)	32.3	17b
11b	1.88 (1H, m)		
12a	2.32 (1H, m)	42.9	
12b	3.20 (1H, dt, 5.9, 13.2)		
13	2.01 (2H, t, 7.8)	31.3	14
14	2.25 (2H, t, 7.8)	30.6	13
15	5.74 (1H, s)	132.0	16a, 17a
16a	2.44 (1H, m)	30.1	15, 17b
16b	2.30 (1H, m)		
17a	1.74 (1H, m)	34.5	15, 16b
17b	2.16 (1H, m)		—
18	2.29 (1H, m)	34.9	19a, 20
19a	3.61 (1H, t, 11.5)	51.7	7, 20
19b	2.96 (1H, t, 11.5)		_
20	1.09 (3H, d, 6.7)	12.8	19a
21	4.49 (1H, d, 10.6)	65.4	_
	3.81 (1H, d, 10.6)		
22	_	175.6	13, 14, 23
23	3.65 (3H, s)	52.3	_

Figure 1. Selected 2D NMR correlations for daphniglaucin C (1).

peaks for H₂-13 to C-5 and C-9 (δ_C 150.6) indicated connectivities of C-8 to C-5 and C-9, constructing an octahydroindole ring system. The connectivity of C-6 to C-12 was implied by the HMBC correlation for H-12b to C-6. In addition, the HMBC correlation for H-17 to C-9 indicated the connectivity of C-9 to C-10, constructing a hexahydroazulene ring system. A methoxy group was attached to C-22 by HMBC correlations for H₃-23 and H₂-14 to C-22 ($\delta_{\rm C}$ 175.6). Thus, the gross structure of daphniglaucin C was assigned as 1 having an unprecedented fused-tetracyclic ring system consisting of an octahydroindole ring with an N-formyl group and a methyl group (C-20) at C-18 and a hexahydroazulene ring with a ketone group at C-6 and a methoxycarbonyl ethyl group (C-13, C-14, C-22, and C-23) at C-8 as shown in Figure 1.

The relative stereochemistry of 1 was deduced from correlations observed in the phase sensitive NOESY spectrum as shown in computer-generated 3D drawing (Fig. 2). NOESY correlations of H-2/H-4a and H-21b/H-4a and a W-type long-range coupling between H-1 and H-3b, both equatorial indicated that the cyclohexane ring (C-1 to C-5 and C-8) took a chair form.

Figure 2. Selected NOESY correlations (dotted arrows) and relative stereochemistry for daphniglaucin C (1).

Scheme 1. Plausible biogenetic path for daphniglaucin C (1).

A plausible biogenetic pathway for daphniglaucin C (1) is proposed as shown in Scheme 1. The biogenetic origin of daphniglaucin C (1) seems to be an imine intermediate C, which might be produced through fragmentation reaction of a secodaphnane skeleton (B) derived from an imine intermediate A proposed by Heathcock et al.³ Oxidation of N-1, C-6, and C-7 of the intermediate D and cleavage of C-6 to C-7 bond of an intermediate E by Polonovski-type reaction¹⁵ will give the skeleton of daphniglaucin C (1), although an alternative path through oxidative cleavage of C-6 to C-7 bond is also possible.

Daphniglaucin C (1) exhibited cytotoxicity against murine lymphoma L1210 cells (IC₅₀, $0.1 \,\mu g/mL$) in vitro and inhibited the polymerization of tubulin^{16,17} (IC₅₀, 25 μ M).

Acknowledgements

The authors thank Mrs. S. Oka and Miss M. Kiuchi, Center for Instrumental Analysis, Hokkaido University, for measurements of FABMS. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References and notes

For reviews of *Daphniphyllum* alkaloids, see: (a) Yamamura, S.; Hirata, Y. In *The Alkaloids*; Manske, R. H. F., Ed.; Academic: New York, 1975; Vol. 15, p 41; (b) Yamamura, S. In *The Alkaloids*; Brossi, A., Ed.; Academic: New York, 1986; Vol. 29, p 265; (c) Kobayashi, J.; Morita, H. In *The Alkaloids*; Cordell, G. A., Ed.; Academic: New York, 2003; Vol. 60, p 165.

- (a) Yang, S. P.; Yue, J. M. J. Org. Chem. 2003, 68, 7961– 7966; (b) Jossang, A.; Bitar, H. E.; Pham, V. C.; Sevenet, T. J. Org. Chem. 2003, 68, 300–304; (c) Hao, X.; Zhou, J.; Node, M.; Fuji, K. Yunnan Zhiwu Yanjiu 1993, 15, 205– 207; (d) Arbain, D.; Byrne, L. T.; Cannon, J. R.; Patrick, V. A.; White, A. H. Aust. J. Chem. 1990, 43, 185–190; (e) Yamamura, S.; Lamberton, J. A.; Niwa, M.; Endo, K.; Hirata, Y. Chem. Lett. 1980, 393–396; (f) Yamamura, S.; Lamberton, J. A.; Irikawa, H.; Okumura, Y.; Hirata, Y. Chem. Lett. 1975, 923–926; (g) Yamamura, S.; Irikawa, H.; Okumura, Y.; Hirata, Y. Bull. Chem. Soc. Jpn. 1975, 48, 2120–2123; (h) Yamamura, S.; Hirata, Y. Tetrahedron Lett. 1974, 15, 3673–3676; (i) Yamamura, S.; Sasaki, K.; Toka, M.; Hirata, Y. Tetrahedron Lett. 1974, 15, 2023– 2026, and references cited therein.
- (a) Wallace, G. A.; Heathcock, C. H. J. Org. Chem. 2001, 66, 450–454; (b) Heathcock, C. H. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 14323–14327; (c) Heathcock, C. H.; Joe, D. J. Org. Chem. 1995, 60, 1131–1142; (d) Heathcock, C. H.; Kath, J. C.; Ruggeri, R. B. J. Org. Chem. 1995, 60, 1120–1130; (e) Heathcock, C. H. Angew. Chem. 1992, 104, 675–691; (f) Heathcock, C. H. Angew. Chem., Int. Ed. Engl. 1992, 31, 665–681, and references cited therein.
- 4. Ruggeri, R. B.; Hansen, M. M.; Heathcock, C. H. J. Am. Chem. Soc. **1988**, 110, 8734–8736.
- 5. Morita, H.; Yoshida, N.; Kobayashi, J. J. Org. Chem. 1999, 64, 7208-7212.
- Morita, H.; Yoshida, N.; Kobayashi, J. J. Org. Chem. 2000, 65, 3558–3562.
- (a) Morita, H.; Yoshida, N.; Kobayashi, J. Tetrahedron 1999, 55, 12549–12556; (b) Morita, H.; Yoshida, N.; Kobayashi, J. Tetrahedron 2000, 56, 2641–2646; (c) Morita, H.; Kobayashi, J. Tetrahedron 2002, 58, 6637– 6641; (d) Morita, H.; Takatsu, H.; Kobayashi, J. Tetrahedron 2003, 59, 3575–3579.
- Kobayashi, J.; Inaba, Y.; Shiro, M.; Yoshida, N.; Morita, H. J. Am. Chem. Soc. 2001, 123, 11402–11408.
- Morita, H.; Yoshida, N.; Kobayashi, J. J. Org. Chem. 2002, 67, 2278–2282.
- Kobayashi, J.; Ueno, S.; Morita, H. J. Org. Chem. 2002, 67, 6546–6549.
- 11. Kobayashi, J.; Takatsu, H.; Ya-Ching, S.; Morita, H. Org. Lett. 2003, 5, 1733–1736.

- 12. Morita, H.; Kobayashi, J. Org. Lett. 2003, 5, 2895-2898.
- 13. Daphniglaucin C: colorless solid; $[\alpha]_D 14^\circ$ (*c* 0.7, CH₃OH); IR (neat) v_{max} 3370, 2930, 1730, 1695, 1635, 1200, 1175, and 755 cm⁻¹; ¹H and ¹³C NMR data (Table 1); FABMS *m/z* 404 (M+H)⁺; HRFABMS *m/z* 404.2438 (M+H; calcd for C₂₃H₃₄NO₅, 404.2437).
- 14. Nakano, T.; Saeki, Y. Tetrahedron Lett. 1967, 8, 4791-4797.
- 15. Grierson, D. Org. React. 1990, 39, 85-295.
- 16. Kobayashi, J.; Suzuki, H.; Shimbo, K.; Takeya, K.; Morita, H. J. Org. Chem. 2001, 66, 6626–6633.
- Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. J. Biol. Chem. 1951, 193, 265–275.